

Successful Government Use of High Performance Computing

David B. Nelson, Ph.D.

Director

National Coordination Office for Information Technology Research and Development

April 18, 2003

NASA Langley Research Center

Examples of High Performance Computing in the Federal Government (1)

- DOE National Nuclear Security Agency: Advanced Scientific Computing Initiative (ASCI); comprehensive 3D+T physics models of nuclear weapons; supercomputers rank 2, 3, 4, 5, 15, 19, 28, 32 on Top500 list*
- DOE Office of Science: Scientific Discovery through Advanced Computing; 51 projects totaling \$57M in climate, chemistry, fluid dynamics, fusion, high energy physics, software infrastructure, numerical libraries, software technology, collaborative tools; supercomputers rank 12, 16, 46, 61 on Top 500

Examples of High Performance Computing in the Federal Government (2)

- NSF: Distributed Terascale Facility; HPC facilities for academic computing in physical sciences, biological sciences, engineering at UCSD, UIUC, Pittsburgh, ANL, Caltech; soon to be linked by 40 Gb/s network; 11.6 Tflops total peak; supercomputers rank 6, 82 on Top500
- NSF: NCAR climate/weather program; supercomputers rank 10, 33 on Top500

Examples of High Performance Computing in the Federal Government (3)

- DoD: HPC Modernization Program; distributed supercomputers supporting Services and academic researchers; Supercomputers rank 11, 20, 29, 40, 54, 57, 59, 62 on Top500
- NOAA: Weather prediction, severe storms, climate modeling; supercomputers rank 8, 24, 25, 35, 36 on Top500

Examples of High Performance Computing in the Federal Government (4)

- NASA: Climate and space simulations; GSFC supercomputer ranks 18 on Top500
- NASA: Aerospace technology, climate simulations; ARC supercomputer ranks 60 on Top500

Explosion of a Super-Nova (not to scale) (DOE)

Start

Middle

Simulation of Turbulent Flame with Comprehensive Chemistry (DOE)

Flame surface from simulation of a turbulent premixed methane flame

Simulation of Aquaporin Protein Inside a Cell (NSF & NIH)

Collision of Deuterium Ion with Gold in Relativistic Heavy Ion Collider (DOE)

Grid Communications & Applications: High End Physics Problem

Characteristics of Successful Modern High Performance Computing Programs

- Closely coupled to Agency Missions
- Managed as a strategic priority, with stable funding and support – typically not based on "pay by the pound"
- Strong leadership from above; strong science/engineering from below
- Projects involve experts in discipline science, computer science, mathematics
- Projects and programs are periodically peer reviewed for quality
- Successes are publicized to justify Agency and program funding

High End Computing Revitalization Task Force (HECRTF)

 Charge: develop a 5-year plan to guide federal investments in HEC, based on the needs of important federal applications of HEC

• Tasks:

- Roadmap for core technology development
- Road map for meeting resource needs of applications
- Recommendations for improvements to the procurement process for HEC systems

Schedule

May: rough draft

June: good draft

August: final report

For Further Information

Please contact us at:

nco@itrd.gov

Or visit us on the Web:

www.itrd.gov